Analysis of thermal relaxation during laser irradiation of tissue.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVE Thermal relaxation time (tau(r)) is a commonly-used parameter for estimating the time required for heat to conduct away from a directly-heated tissue region. Previous studies have demonstrated that temperature superposition can occur during multiple-pulse irradiation, even if the interpulse time is considerably longer than tau(r). The objectives of this study were (1) to analyze tissue thermal relaxation following laser-induced heating, and (2) to calculate the time required for a laser-induced temperature rise to decrease to near-baseline values. STUDY DESIGN/MATERIALS AND METHODS One-dimensional (1-D) analytical and numerical and 2-D numerical models were designed and used for calculations of the time tau(eff) required for the peak temperature (T(peak)) to decrease to values slightly over baseline (DeltaT(base)). Temperature values included T(peak)=65 and 100 degrees C, and DeltaT(base) = 5, 10, and 20 degrees C. To generalize the calculations, a wide range of optical and thermal properties was incorporated into the models. Flattop and gaussian spatial beam profiles were also considered. RESULTS 2-D model calculations of tau(eff) demonstrated that tau(eff) (2-D) was as much as 40 times longer than tau(r). For a given combination of T(peak) and DeltaT(base), a linear relationship was calculated between tau(eff) (1-D) and tau(r) and was independent of optical and thermal properties. A comparison of 1-D and 2-D models demonstrated that 1-D models generally predicted longer values of tau(eff) than those predicted with a 2-D geometry when the laser spot diameter was equal to or less than the optical penetration depth. CONCLUSION Relatively simple calculations can be performed to estimate tau(eff) for known values of tau(r), T(peak) and DeltaT(base). The parameter tau(eff) may be a better estimate than tau(r) of tissue thermal relaxation during multiple-pulse laser irradiation.
منابع مشابه
Effect of laser irradiation on the progression of skin cancer using carcinogen among hamsters
Introduction: Skin cancer has been increased day by day, but it can be cured if it diagnosed early. After reviewing the scientific literature about 980 nm diode laser, and its multiple advantages on skin diseases. We studied in this paper the effectiveness of this type of laser on the progression of skin cancer among hamsters which were exposed to carcinogen on the bac...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملAnalysis of the theory of thermal damage in biological tissues caused by Laser beam
Introduction: In laser surgery, the laser beam can evaporate and cut the tissue like a small surgical knife when the tissue temperature is heated to 100 degrees Celsius. a complete understanding of the distribution of damage in both pathologic tissue and surrounding tissue is necessary. Although the test is the most realistic solution for treating medical problems, for this rea...
متن کاملLaser safety importance in clinical laser applications
Introduction: By introducing of laser systems and their continuous development, a new chapter of laser systems applications in a variety fields including research and clinical science in addition to the therapeutic, diagnostic applications were available for medical professionals in various fields. Most lasers emit radiation with intrinsic probable risks where in laser-tissue i...
متن کاملAn investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice
Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lasers in surgery and medicine
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2001